40001百老汇电子游戏(中国)有限公司官网

ENGLISH | 江苏大学官网
首页 新闻中心 40001百老汇官网电子游戏 党建工作 师资队伍 学科建设 人才培养 科学研究 学生工作 对外交流
新闻中心
 
学院动态
通知公告
学术资讯
 
学术资讯 当前位置: 首页 > 新闻中心 > 学术资讯 > 正文
生云鹤教授报告会
发布日期:2023-04-10  浏览:
 


报告题目:Rota-Baxter groups, post-groups and related structures

报告人: 生云鹤 教授

位: 吉林大学

报告时间:412 10:00-11:00(周三上午)

腾讯会议:911-336-472

报告摘要:Rota-Baxter operators on Lie algebras were first studied by Belavin, Drinfeld and Semenov-Tian-Shansky as operator forms of the classical Yang-Baxter equation. As a fundamental tool in studying integrable systems, the factorization theorem of Lie groups by Semenov-Tian-Shansky was obtained by integrating a factorization of Lie algebras from solutions of the modified Yang-Baxter equation. Integrating the Rota-Baxter operators on Lie algebras, we introduce the notion of Rota-Baxter operators on Lie groups and more generally on groups. Then the factorization theorem can be achieved directly on groups.  As the underlying structures of Rota-Baxter operators on groups, the notion of post-groups was introduced. The differentiation of post-Lie groups gives post-Lie algebras. Post-groups are also related to braces and Lie-Butcher groups, and give rise to solutions of Yang-Baxter equations. The talk is based on the joint work with Chengming Bai, Li Guo, Honglei Lang and Rong Tang.

报告人简介:生云鹤,吉林大学教授,《数学进展》、《J. Nonlinear Math. Phys.》编委,吉林省第十六批享受政府津贴专家(省有突出贡献专家)。2009年1月博士毕业于北京大学,从事Poisson几何、高阶李理论与数学物理的研究,2019年获得国家自然科学基金委优秀青年基金项目,在Math. Ann., CMP, Adv. Math., Tran. AMS, IMRN, JNCG, JA等杂志上发表学术论文80余篇,被引用600余次。


欢迎大家参加!


 
地址:江苏省镇江市学府路301号76信箱
电话:0511-88780161
学院微信公众号
Copyright @ 江苏大学 40001百老汇官网电子游戏 版权所有  您是第 3339152 位访客