| X. Zhou, Z. Meng, J. Su, Low-order nonconforming brick elements for the 3D Brinkman model, Comput. Math. Appl., 2021, 98: 201-217. (SCI) X. Zhou, Z. Meng, X. Fan, Z. Luo. Robust nonconforming polynomial finite elements over quadrilaterals. Int. J. Comput. Math., 2021, 98(4): 758-782. (SCI) X. Zhou, Z. Meng. High accuracy nonconforming biharmonic element over n-rectangular meshes. Numer. Methods Partial Differential Equations., 2020, 36(6): 2018-2034. (SCI) X. Zhou, Z. Meng, X. Fan, Z. Luo. Simple nonconforming brick element for 3D Stokes equations. Appl. Math. Lett., 2018, 78: 9-15. (SCI) X. Zhou, Z. Meng, X. Fan, Z. Luo. Nonconforming polynomial mixed finite element for the Brinkman problem over quadrilateral meshes. Comput. Math. Appl., 2018, 76(4): 877-892. (SCI) X. Zhou, Z. Meng, X. Fan, Z. Luo. A note on a lowest order divergence-free Stokes element on quadrilaterals. Math. Methods Appl. Sci., 2019, 42(11): 4008-4016. (SCI) X. Zhou, Z. Meng, X. Fan, Z. Luo. Analysis of two low-order equal-order finite element pairs for Stokes equations over quadrilaterals. J. Comput. Appl. Math., 2020, 364: Article 112323. (SCI) Z. Meng, Z. Luo, X. Zhou. A stable nonconforming finite elementon hexahedra. Inter. J. Numer. Methods Engrg., 2017, 109(5): 611-630. (SCI) X. Zhou, Z. Meng, Z. Luo. New nonconforming finite elements on arbitrary convex quadrilateral meshes. J. Comput. Appl. Math., 2016, 296: 798-814. (SCI) X. Zhou, Z. Meng, X. Wang, Z. Luo. Quadratic nonconforming finite element method for 3D Stokes equations on cuboid meshes. Appl. Math. J. Chinese Univ. Ser. B, 2016, 31(1): 21-36. (SCI) Z. Luo, X. Zhou, X.D. Gu. From a projective invariant to some new properties of algebraic hypersurfaces. Sci. China Math., 2014, 57(11): 2273-2284. (SCI) Xin. F, Z. Luo, J. Zhang, X. Zhou, Q. Jia, D. Luo. Characteristic number: Theory and its application to shape analysis. Axioms, 2014, 3(2): 202-221. Z. Luo, D. Luo, Xin. F, X. Zhou, Q. Jia. A shape descriptor based on new projective invariants. ICIP 2013, IEEE, 2013: 2862-2866. (EI) |