| 1. J. M. Heninger, D. Lippolis, and P. Cvitanovic, Perturbation theory for the Fokker-Planck operator in chaos, Commun. Nonlin. Sci. Numer. Simul., 2018, 55, 16. 2. D. Lippolis, L. Wang, and X.-F. Xiao, Counting statistics of chaotic resonances at optical frequencies: Theory and experiments, Phys. Rev. E, 2017, 96, 011217. 3. L. Wang, D. Lippolis, Z.-Y. Li, X.-F. Jiang, Q. Gong, and X.-F. Xiao, Statistics of chaotic resonances in an optical microcavity, Phys. Rev. E, 2016, 93, 040201(R). 4. J. M. Heninger, D. Lippolis, and P. Cvitanovic, Neighborhoods of periodic orbits and the stationary distribution of a noisy chaotic system, Phys. Rev. E, 2015, 92, 062922. 5. D. Lippolis, J. W. Ryu, and S. W. Kim, Localization in chaotic systems with a single-channel opening, Phys. Rev. E, 2015, 92, 012921. 6. D. Lippolis, Mapping densities in a noisy state space, International symposium on nonlinear theory and its applications (NOLTA), IEICE Japan, 2013, pp. 318-321. 7. D. Lippolis, J.W. Ryu, S.Y. Lee, and S.W. Kim, On-manifold localization in open quantum maps, Phys. Rev. E, 2012, 86, 066213. 8. P. Cvitanovic and D. Lippolis, Knowing when to stop: how noise frees us from determinism, Let's face chaos through nonlinear dynamics, M. Robnik and V. Romanovsky eds., American Institute of Physics, Melville, New York, 2012, pp. 82-126. 9. D. Lippolis and P. Cvitanovic, How well can one resolve the state space of a chaotic map?, Phys. Rev. Lett., 2010, 104, 014101. 10. C. P. Dettmann and D. Lippolis, Periodic orbit theory of two Tchebyscheff maps, Chaos Soliton. Fract., 2005, 23, 43. |